1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
use raw::*;
use context::Context;
use compile::Compile;
use label::Label;
use types::Ty;
use insn::Block;
use value::Val;
use util::{self, from_ptr, from_ptr_opt, from_ptr_oom};
use libc::{
    c_char,
    c_int,
    c_uint,
    c_void
};
use std::default::Default;
use std::fmt;
use std::ops::{Deref, DerefMut, Index};
use std::{mem, ptr};
use std::ffi::CString;
use std::marker::PhantomData;
/// A platform's application binary interface
///
/// This describes how the function should be called
#[repr(C)]
#[derive(Clone, Copy)]
pub enum Abi {
    /// The C application binary interface
    CDecl,
    /// The C application binary interface with variable arguments
    VarArg,
    /// A Windows application binary interface*-+
    StdCall,
    /// A Windows application binary interface
    FastCall
}
impl Default for Abi {
    fn default() -> Abi {
        Abi::CDecl
    }
}
/// Call flags to a function
pub mod flags {
    use libc::c_int;
    /// Call flags to a function
    bitflags!(
        flags CallFlags: c_int {
            /// When the function won't throw a value
            const NO_THROW = 1,
            /// When the function won't return a value
            const NO_RETURN = 2,
            /// When the function is tail-recursive
            const TAIL = 4
        }
    );
}
/// A function
pub struct Func(PhantomData<[()]>);
native_ref!(&Func = jit_function_t);
impl Func {
    /// Check if the given function has been compiled
    pub fn is_compiled(&self) -> bool {
        unsafe { jit_function_is_compiled(self.into()) != 0 }
    }
    /// Get the signature of the given function
    pub fn get_signature(&self) -> &Ty {
        unsafe { from_ptr(jit_function_get_signature(self.into())) }
    }
}
/// A function which has already been compiled from an `UncompiledFunction`, so it can
/// be called but not added to.
///
/// A function persists for the lifetime of its containing context. This is
/// a function which has already been compiled and is now in executable form.
#[derive(Clone, Copy)]
pub struct CompiledFunction<'a> {
    _func: jit_function_t,
    marker: PhantomData<&'a ()>
}
native_ref!(contra CompiledFunction, _func: jit_function_t);
impl<'a> Deref for CompiledFunction<'a> {
    type Target = Func;
    fn deref(&self) -> &Func {
        unsafe { mem::transmute(self._func) }
    }
}
impl<'a> DerefMut for CompiledFunction<'a> {
    fn deref_mut(&mut self) -> &mut Func {
        unsafe { mem::transmute(self._func) }
    }
}
impl<'a> fmt::Debug for CompiledFunction<'a> {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        write!(fmt, "{}", try!(util::dump(|fd| unsafe {
            jit_dump_function(mem::transmute(fd), self.into(), ptr::null());
        })))
    }
}
impl<'a> CompiledFunction<'a> {
    /// Run a closure with the compiled function as an argument
    pub fn with<A, R, F:FnOnce(extern "C" fn(A) -> R)>(self, cb:F) {
        cb(unsafe {
            mem::transmute(jit_function_to_closure(self._func))
        })
    }
}

macro_rules! expect(
    ($name:ident, $value:expr, float) => (
        if cfg!(not(ndebug)) {
            let ty = $value.get_type();
            if !ty.is_float() {
                panic!("Value given to {} should be float, got {:?}", stringify!($name), ty);
            }
        }
    );
    ($name:ident, $value:expr, primitive) => (
        if cfg!(not(ndebug)) {
            let ty = $value.get_type();
            if !ty.is_primitive() {
                panic!("Value given to {} should be primitive, got {:?}", stringify!($name), ty);
            }
        }
    );
    ($name:ident, $v1:expr, $v2:expr, primitive) => (
        if cfg!(not(ndebug)) {
            let ty1 = $v1.get_type();
            let ty2 = $v2.get_type();
            if !ty1.is_primitive() {
                panic!("Values given to {} should be primitive, got {:?}", stringify!($name), ty1);
            } else if !ty2.is_primitive() {
                panic!("Values given to {} should be primitive, got {:?}", stringify!($name), ty2);
            }
        }
    );
    ($name:ident, $value:expr, int) => (
        if cfg!(not(ndebug)) {
            let ty = $value.get_type();
            if !ty.is_int() {
                panic!("Value given to {} should be integer, got {:?}", stringify!($name), ty);
            }
        }
    );
    ($name:ident, $dest:expr, $source:expr, $size:expr) => (
        if cfg!(not(ndebug)) {
            let dest_t = $dest.get_type();
            let source_t = $source.get_type();
            let size_t = $size.get_type();
            if !size_t.is_int() {
                panic!("Expected integer size for {}, but got {:?}", stringify!($name), size_t);
            } else if !dest_t.is_pointer() {
                panic!("Expected pointer destination for {}, but got {:?}", stringify!($name), size_t);
            } else if !source_t.is_pointer() {
                panic!("Expected pointer source for {}, but got {:?}", stringify!($name), size_t);
            }
        }
    )
);

#[derive(PartialEq)]
/// A function which has not been compiled yet, so it can have instructions added to it.
///
/// A function persists for the lifetime of its containing context. This represents
/// the function in the "building" state, where the user constructs instructions
/// that represents the function body. Once the build process is complete, the
/// user calls `function.compile()` to convert it into its executable form.
pub struct UncompiledFunction<'a> {
    _func: jit_function_t,
    marker: PhantomData<&'a ()>,
    owned: bool
}
impl<'a, 'b> From<&'a UncompiledFunction<'b>> for jit_function_t {
    /// Convert to a native pointer
    fn from(func: &'a UncompiledFunction<'b>) -> jit_function_t {
        func._func
    }
}
impl<'a, 'b> From<&'a mut UncompiledFunction<'b>> for jit_function_t {
    /// Convert to a native pointer
    fn from(func: &'a mut UncompiledFunction<'b>) -> jit_function_t {
        func._func
    }
}
impl<'a> From<UncompiledFunction<'a>> for jit_function_t {
    /// Convert to a native pointer
    fn from(func: UncompiledFunction<'a>) -> jit_function_t {
        func._func
    }
}
impl<'a> From<jit_function_t> for UncompiledFunction<'a> {
    fn from(ptr: jit_function_t) -> UncompiledFunction<'a> {
        UncompiledFunction {
            _func: ptr,
            marker: PhantomData,
            owned: false
        }
    }
}
impl<'a> fmt::Debug for UncompiledFunction<'a> {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        write!(fmt, "{}", try!(util::dump(|fd| unsafe {
            jit_dump_function(mem::transmute(fd), self.into(), ptr::null());
        })))
    }
}

impl<'a> Deref for UncompiledFunction<'a> {
    type Target = Func;
    fn deref(&self) -> &Func {
        unsafe { mem::transmute(self._func) }
    }
}
impl<'a> DerefMut for UncompiledFunction<'a> {
    fn deref_mut(&mut self) -> &mut Func {
        unsafe { mem::transmute(self._func) }
    }
}

impl<'a> Drop for UncompiledFunction<'a> {
    #[inline(always)]
    fn drop(&mut self) {
        if self.owned {
            unsafe {
                jit_function_abandon(self.into());
            }
        }
    }
}
impl<'a> Index<usize> for UncompiledFunction<'a> {
    type Output = Val;
    /// Get the value that corresponds to a specified function parameter.
    fn index(&self, param: usize) -> &Val {
        let ptr = unsafe { jit_value_get_param(self.into(), param as u32) };
        if let Some(val) = from_ptr_opt(ptr) {
            val
        } else {
            panic!("Function {:?} has no parameter {}", self, param)
        }
    }
}
impl<'a> UncompiledFunction<'a> {
    #[inline(always)]
    /// Create a new function block and associate it with a JIT context.
    /// It is recommended that you call `Function::new` and `function.compile()`
    /// in the closure you give to `context.build(...)`.
    ///
    /// This will protect the JIT's internal data structures within a
    /// multi-threaded environment.
    ///
    /// ```rust
    /// use jit::*;
    /// let mut ctx = Context::<()>::new();
    /// let func = UncompiledFunction::new(&mut ctx, &get::<fn(f64) -> f64>());
    /// ```
    pub fn new<T>(context:&'a mut Context<T>, signature:&Ty) -> UncompiledFunction<'a> {
        unsafe {
            let mut me:UncompiledFunction = from_ptr_oom(jit_function_create(
                context.into(),
                signature.into()
            ));
            me.owned = true;
            if cfg!(any(test, bench, ndebug)) {
                me.set_recompilable();
                me.set_optimization_level(UncompiledFunction::get_max_optimization_level());
            }
            me
        }
    }
    #[inline(always)]
    /// Create a new function block and associate it with a JIT context.
    /// In addition, this function is nested inside the specified *parent*
    /// function and is able to access its parent's (and grandparent's) local
    /// variables.
    ///
    /// The front end is responsible for ensuring that the nested function can
    /// never be called by anyone except its parent and sibling functions.
    /// The front end is also responsible for ensuring that the nested function
    /// is compiled before its parent.
    pub fn new_nested<T>(context:&'a mut Context<T>, signature: &Ty,
                        parent: &'a UncompiledFunction<'a>) -> UncompiledFunction<'a> {
        unsafe {
            let mut me:UncompiledFunction = from_ptr_oom(jit_function_create_nested(
                context.into(),
                signature.into(),
                parent.into()
            ));
            me.owned = true;
            if cfg!(any(test, bench, ndebug)) {
                me.set_recompilable();
                me.set_optimization_level(UncompiledFunction::get_max_optimization_level());
            }
            me
        }
    }
    #[inline(always)]
    /// Make an instruction that converts the value to the type given
    pub fn insn_convert(&self, v: &'a Val,
                            t:&Ty, overflow_check:bool) -> &'a Val {
        unsafe {
            from_ptr(jit_insn_convert(
                self.into(),
                v.into(),
                t.into(),
                overflow_check as c_int
            ))
        }
    }
    #[inline(always)]
    /// Make an instructional representation of a Rust value
    /// ```rust
    /// use jit::*;
    /// let mut ctx = Context::<()>::new();
    /// let func = UncompiledFunction::new(&mut ctx, &get::<fn() -> i32>());
    /// func.insn_return(func.insn_of(42i32));
    /// ```
    pub fn insn_of<T>(&self, val:T) -> &'a Val where T:Compile<'a> {
        val.compile(self)
    }
    #[inline(always)]
    /// Notify the function building process that this function has a catch block
    /// in it. This must be called before any code that is part of a try block
    pub fn insn_uses_catcher(&self) {
        unsafe {
            jit_insn_uses_catcher(self.into());
        }
    }
    #[inline(always)]
    /// Make an instruction to throw an exception from the function with the value given
    pub fn insn_throw(&self, retval: &'a Val) {
        unsafe {
            jit_insn_throw(self.into(), retval.into());
        }
    }
    #[inline(always)]
    /// Make an instruction that will return from the function with the value given
    pub fn insn_return(&self, retval: &'a Val) {
        unsafe {
            jit_insn_return(self.into(), retval.into());
        }
    }
    #[inline(always)]
    /// Return from the function
    pub fn insn_default_return(&self) {
        unsafe {
            jit_insn_default_return(self.into());
        }
    }
    #[inline(always)]
    /// Make an instruction that multiplies the values
    pub fn insn_mul(&self, v1: &'a Val, v2: &'a Val) -> &'a Val {
        self.insn_binop(v1, v2, jit_insn_mul)
    }
    #[inline(always)]
    /// Make an instruction that multiplies the values and throws upon overflow
    pub fn insn_mul_ovf(&self, v1: &'a Val, v2: &'a Val) -> &'a Val {
        self.insn_binop(v1, v2, jit_insn_mul_ovf)
    }
    #[inline(always)]
    /// Make an instruction that adds the values
    ///
    /// You can also just use `v1 + v2` in your code instead of running this method,
    /// `&Val` has the `Add` trait implemented so it can be added with normal operators.
    pub fn insn_add(&self, v1: &'a Val, v2: &'a Val) -> &'a Val {
        self.insn_binop(v1, v2, jit_insn_add)
    }
    #[inline(always)]
    /// Make an instruction that adds the values and throws upon overflow
    pub fn insn_add_ovf(&self, v1: &'a Val, v2: &'a Val) -> &'a Val {
        self.insn_binop(v1, v2, jit_insn_add_ovf)
    }
    #[inline(always)]
    /// Make an instruction that subtracts the second value from the first
    ///
    /// You can also just use `v1 - v2` in your code instead of running this method,
    /// `&Val` has the `Sub` trait implemented so it can be subtracted with normal operators.
    pub fn insn_sub(&self, v1: &'a Val, v2: &'a Val) -> &'a Val {
        self.insn_binop(v1, v2, jit_insn_sub)
    }
    #[inline(always)]
    /// Make an instruction that subtracts the second value from the first and throws upon overflow
    pub fn insn_sub_ovf(&self, v1: &'a Val, v2: &'a Val) -> &'a Val {
        self.insn_binop(v1, v2, jit_insn_sub_ovf)
    }
    #[inline(always)]
    /// Make an instruction that divides the first number by the second
    ///
    /// You can also just use `v1 / v2` in your code instead of running this method,
    /// `&Val` has the `Div` trait implemented so it can be divided with normal operators.
    pub fn insn_div(&self, v1: &'a Val, v2: &'a Val) -> &'a Val {
        self.insn_binop(v1, v2, jit_insn_div)
    }
    #[inline(always)]
    /// Make an instruction that finds the remainder when the first number is
    /// divided by the second
    ///
    /// You can also just use `v1 % v2` in your code instead of running this method,
    /// `&Val` has the `Rem` trait implemented so it can be done with normal operators.
    pub fn insn_rem(&self, v1: &'a Val, v2: &'a Val) -> &'a Val {
        self.insn_binop(v1, v2, jit_insn_rem)
    }
    #[inline(always)]
    /// Make an instruction that checks if the first value is lower than or
    /// equal to the second
    pub fn insn_leq(&self, v1: &'a Val, v2: &'a Val) -> &'a Val {
        self.insn_binop(v1, v2, jit_insn_le)
    }
    #[inline(always)]
    /// Make an instruction that checks if the first value is greater than or
    /// equal to the second
    pub fn insn_geq(&self, v1: &'a Val, v2: &'a Val) -> &'a Val {
        self.insn_binop(v1, v2, jit_insn_ge)
    }
    #[inline(always)]
    /// Make an instruction that checks if the first value is lower than the second
    pub fn insn_lt(&self, v1: &'a Val, v2: &'a Val) -> &'a Val {
        self.insn_binop(v1, v2, jit_insn_lt)
    }
    #[inline(always)]
    /// Make an instruction that checks if the first value is greater than the second
    pub fn insn_gt(&self, v1: &'a Val, v2: &'a Val) -> &'a Val {
        self.insn_binop(v1, v2, jit_insn_gt)
    }
    #[inline(always)]
    /// Make an instruction that checks if the values are equal
    pub fn insn_eq(&self, v1: &'a Val, v2: &'a Val) -> &'a Val {
        self.insn_binop(v1, v2, jit_insn_eq)
    }
    #[inline(always)]
    /// Make an instruction that checks if the values are not equal
    pub fn insn_neq(&self, v1: &'a Val, v2: &'a Val) -> &'a Val {
        self.insn_binop(v1, v2, jit_insn_ne)
    }
    #[inline(always)]
    /// Make an instruction that performs a bitwise and on the two values
    ///
    /// You can also just use `v1 & v2` in your code instead of running this method,
    /// `&Val` has the `BitAnd` trait implemented so it can be done with normal operators.
    pub fn insn_and(&self, v1: &'a Val, v2: &'a Val) -> &'a Val {
        self.insn_binop(v1, v2, jit_insn_and)
    }
    #[inline(always)]
    /// Make an instruction that performs a bitwise or on the two values
    ///
    /// You can also just use `v1 | v2` in your code instead of running this method,
    /// `&Val` has the `BitOr` trait implemented so it can be done with normal operators.
    pub fn insn_or(&self, v1: &'a Val, v2: &'a Val) -> &'a Val {
        self.insn_binop(v1, v2, jit_insn_or)
    }
    #[inline(always)]
    /// Make an instruction that performs a bitwise xor on the two values
    ///
    /// You can also just use `v1 ^ v2` in your code instead of running this method,
    /// `&Val` has the `BitXor` trait implemented so it can be done with normal operators.
    pub fn insn_xor(&self, v1: &'a Val, v2: &'a Val) -> &'a Val {
        self.insn_binop(v1, v2, jit_insn_xor)
    }
    #[inline(always)]
    /// Make an instruction that performs a bitwise not on the two values
    ///
    /// You can also just use `!value` in your code instead of running this method.
    /// `&Val` has the `Not` trait implemented so it can be inversed with normal operators.
    pub fn insn_not(&self, value: &'a Val) -> &'a Val {
        self.insn_unop(value, jit_insn_not)
    }
    #[inline(always)]
    /// Make an instruction that performs a left bitwise shift on the first
    /// value by the second value
    ///
    /// You can also just use `v1 << v2` in your code instead of running this method,
    /// `&Val` has the `Shl` trait implemented so it can be shifted with normal operators.
    pub fn insn_shl(&self, v1: &'a Val, v2: &'a Val) -> &'a Val {
        self.insn_binop(v1, v2, jit_insn_shl)
    }
    #[inline(always)]
    /// Make an instruction that performs a right bitwise shift on the first
    /// value by the second value
    ///
    /// You can also just use `v1 >> v2` in your code instead of running this method,
    /// `&Val` has the `Shr` trait implemented so it can be shifted with normal operators.
    pub fn insn_shr(&self, v1: &'a Val, v2: &'a Val) -> &'a Val {
        self.insn_binop(v1, v2, jit_insn_shr)
    }
    /// Make an instruction that performs a right bitwise shift on the first
    /// value by the second value
    pub fn insn_ushr(&self, v1: &'a Val, v2: &'a Val) -> &'a Val {
        self.insn_binop(v1, v2, jit_insn_ushr)
    }
    #[inline(always)]
    /// Make an instruction that performs a negation on the value
    ///
    /// You can also just use `-value` in your code instead of running this method.
    /// `&Val` has the `Neg` trait implemented so it can be negatedd with normal operators.
    pub fn insn_neg(&self, value: &'a Val) -> &'a Val {
        self.insn_unop(value, jit_insn_neg)
    }
    #[inline(always)]
    /// Make an instruction that duplicates the value given
    ///
    /// This is the same as load
    pub fn insn_dup(&self, value: &'a Val) -> &'a Val {
        unsafe {
            let dup_value = jit_insn_load(self.into(), value.into());
            from_ptr(dup_value)
        }
    }
    #[inline(always)]
    /// Make an instruction that loads the contents of `src` into a temporary
    pub fn insn_load(&self, src: &'a Val) -> &'a Val {
        self.insn_unop(src, jit_insn_load)
    }
    #[inline(always)]
    /// Make an instruction that loads a value of the given type from `value + offset`, where
    /// `value` must be a pointer
    pub fn insn_load_relative(&self, value: &'a Val, offset: usize, ty: &Ty) -> &'a Val {
        if cfg!(not(ndebug)) && !value.get_type().is_pointer() {
            panic!("Value given to insn_load_relative should be pointer, got {:?}", value.get_type());
        }
        unsafe {
            from_ptr(jit_insn_load_relative(
                self.into(),
                value.into(),
                offset as jit_nint,
                ty.into()
            ))
        }
    }
    #[inline(always)]
    /// Make an instruction that stores the contents of `val` into `dest`, where `dest` is a
    /// temporary value or local value
    pub fn insn_store(&self, dest: &'a Val, val: &'a Val) {
        unsafe {
            jit_insn_store(self.into(), dest.into(), val.into());
        }
    }
    #[inline(always)]
    /// Make an instruction that stores the `value` at the address `dest + offset`, where `dest`
    /// must be a pointer
    pub fn insn_store_relative(&self, dest: &'a Val, offset: usize, value: &'a Val) {
        if cfg!(not(ndebug)) && !dest.get_type().is_pointer() {
            panic!("Destination given to insn_store_relative should be pointer, got {:?}", value.get_type());
        }
        unsafe {
            jit_insn_store_relative(self.into(), dest.into(), offset as jit_nint, value.into());
        }
    }
    #[inline(always)]
    /// Make an instruction that sets a label
    pub fn insn_label(&self, label: &mut Label<'a>) {
        unsafe {
            jit_insn_label(self.into(), &mut **label);
        }
    }
    #[inline(always)]
    /// Make an instruction that branches to a certain label
    pub fn insn_branch(&self, label: &mut Label<'a>) {
        unsafe {
            jit_insn_branch(self.into(), &mut **label);
        }
    }
    #[inline(always)]
    /// Make an instruction that branches to a certain label if the value is true
    pub fn insn_branch_if(&self, value: &'a Val, label: &mut Label<'a>) {
        unsafe {
            jit_insn_branch_if(self.into(), value.into(), &mut **label);
        }
    }
    #[inline(always)]
    /// Make an instruction that branches to a certain label if the value is false
    pub fn insn_branch_if_not(&self, value: &'a Val, label: &mut Label<'a>) {
        unsafe {
            jit_insn_branch_if_not(self.into(), value.into(), &mut **label);
        }
    }
    #[inline(always)]
    /// Make an instruction that branches to a label in the table
    pub fn insn_jump_table(&self, value: &'a Val, labels: &mut [Label<'a>]) {
        unsafe {
            let mut native_labels: Vec<_> = labels.iter()
                .map(|label| **label).collect();
            jit_insn_jump_table(
                self.into(),
                value.into(),
                native_labels.as_mut_ptr(),
                labels.len() as c_uint
            );
        }
    }
    #[inline(always)]
    /// Make an instruction that gets the inverse cosine of the number given
    pub fn insn_acos(&self, v: &'a Val) -> &'a Val{
        self.insn_unop(v, jit_insn_acos)
    }
    #[inline(always)]
    /// Make an instruction that gets the inverse sine of the number given
    pub fn insn_asin(&self, v: &'a Val) -> &'a Val{
        self.insn_unop(v, jit_insn_asin)
    }
    #[inline(always)]
    /// Make an instruction that gets the inverse tangent of the number given
    pub fn insn_atan(&self, v: &'a Val) -> &'a Val{
        self.insn_unop(v, jit_insn_atan)
    }
    #[inline(always)]
    /// Make an instruction that gets the inverse tangent of the numbers given
    pub fn insn_atan2(&self, v1: &'a Val, v2: &'a Val) -> &'a Val {
        self.insn_binop(v1, v2, jit_insn_atan2)
    }
    #[inline(always)]
    /// Make an instruction that finds the nearest integer above a number
    pub fn insn_ceil(&self, v: &'a Val) -> &'a Val{
        self.insn_unop(v, jit_insn_ceil)
    }
    #[inline(always)]
    /// Make an instruction that gets the consine of the number given
    pub fn insn_cos(&self, v: &'a Val) -> &'a Val{
        self.insn_unop(v, jit_insn_cos)
    }
    #[inline(always)]
    /// Make an instruction that gets the hyperbolic consine of the number given
    pub fn insn_cosh(&self, v: &'a Val) -> &'a Val{
        self.insn_unop(v, jit_insn_cosh)
    }
    #[inline(always)]
    /// Make an instruction that gets the natural logarithm rased to the power
    /// of the number
    pub fn insn_exp(&self, v: &'a Val) -> &'a Val{
        self.insn_unop(v, jit_insn_exp)
    }
    #[inline(always)]
    /// Make an instruction that finds the nearest integer below a number
    pub fn insn_floor(&self, v: &'a Val) -> &'a Val{
        self.insn_unop(v, jit_insn_floor)
    }
    #[inline(always)]
    /// Make an instruction that gets the natural logarithm of the number
    pub fn insn_log(&self, v: &'a Val) -> &'a Val{
        self.insn_unop(v, jit_insn_log)
    }
    #[inline(always)]
    /// Make an instruction that gets the base 10 logarithm of the number
    pub fn insn_log10(&self, v: &'a Val) -> &'a Val{
        self.insn_unop(v, jit_insn_log10)
    }
    #[inline(always)]
    /// Make an instruction the gets the result of raising the first value to
    /// the power of the second value
    pub fn insn_pow(&self, v1: &'a Val, v2: &'a Val) -> &'a Val {
        self.insn_binop(v1, v2, jit_insn_pow)
    }
    #[inline(always)]
    /// Make an instruction the gets the result of rounding the value to the
    /// nearest integer
    pub fn insn_rint(&self, v: &'a Val) -> &'a Val{
        self.insn_unop(v, jit_insn_rint)
    }
    #[inline(always)]
    /// Make an instruction the gets the result of rounding the value to the
    /// nearest integer
    pub fn insn_round(&self, v: &'a Val) -> &'a Val{
        self.insn_unop(v, jit_insn_round)
    }
    #[inline(always)]
    /// Make an instruction the gets the sine of the number
    pub fn insn_sin(&self, v: &'a Val) -> &'a Val{
        self.insn_unop(v, jit_insn_sin)
    }
    #[inline(always)]
    /// Make an instruction the gets the hyperbolic sine of the number
    pub fn insn_sinh(&self, v: &'a Val) -> &'a Val{
        self.insn_unop(v, jit_insn_sinh)
    }
    #[inline(always)]
    /// Make an instruction the gets the square root of a number
    pub fn insn_sqrt(&self, value: &'a Val) -> &'a Val {
        expect!(insn_sqrt, value, float);
        self.insn_unop(value, jit_insn_sqrt)
    }
    #[inline(always)]
    /// Make an instruction the gets the tangent of a number
    pub fn insn_tan(&self, v: &'a Val) -> &'a Val {
        self.insn_unop(v, jit_insn_tan)
    }
    #[inline(always)]
    /// Make an instruction the gets the hyperbolic tangent of a number
    pub fn insn_tanh(&self, v: &'a Val) -> &'a Val{
        self.insn_unop(v, jit_insn_tanh)
    }
    #[inline(always)]
    /// Make an instruction that truncates the value
    pub fn insn_trunc(&self, v: &'a Val) -> &'a Val {
        self.insn_unop(v, jit_insn_trunc)
    }
    #[inline(always)]
    /// Make an instruction that checks if the number is NaN
    pub fn insn_is_nan(&self, v: &'a Val) -> &'a Val {
        expect!(insn_is_nan, v, float);
        self.insn_unop(v, jit_insn_is_nan)
    }
    #[inline(always)]
    /// Make an instruction that checks if the number is finite
    pub fn insn_is_finite(&self, v: &'a Val) -> &'a Val {
        expect!(insn_is_finite, v, float);
        self.insn_unop(v, jit_insn_is_finite)
    }
    #[inline(always)]
    /// Make an instruction that checks if the number is  infinite
    pub fn insn_is_inf(&self, v: &'a Val) -> &'a Val {
        expect!(insn_is_inf, v, float);
        self.insn_unop(v, jit_insn_is_inf)
    }
    #[inline(always)]
    /// Make an instruction that gets the absolute value of a number
    pub fn insn_abs(&self, v: &'a Val) -> &'a Val {
        expect!(insn_abs, v, primitive);
        self.insn_unop(v, jit_insn_abs)
    }
    #[inline(always)]
    /// Make an instruction that gets the smallest of two numbers
    pub fn insn_min(&self, v1: &'a Val, v2: &'a Val) -> &'a Val {
        expect!(insn_min, v1, v2, primitive);
        self.insn_binop(v1, v2, jit_insn_min)
    }
    #[inline(always)]
    /// Make an instruction that gets the biggest of two numbers
    pub fn insn_max(&self, v1: &'a Val, v2: &'a Val) -> &'a Val {
        expect!(insn_max, v1, v2, primitive);
        self.insn_binop(v1, v2, jit_insn_max)
    }
    #[inline(always)]
    /// Make an instruction that gets the sign of a number
    pub fn insn_sign(&self, v: &'a Val) -> &'a Val {
        expect!(insn_sign, v, primitive);
        self.insn_unop(v, jit_insn_sign)
    }

    /// Call the function, which may or may not be translated yet
    pub fn insn_call(&self, name:Option<&str>, func:&Func, sig:Option<&Ty>,
        args: &mut [&'a Val], flags: flags::CallFlags) -> &'a Val {
        unsafe {
            let mut native_args:&mut [jit_value_t] = mem::transmute(args);
            let c_name = name.map(|name| CString::new(name.as_bytes()).unwrap());
            let sig = mem::transmute(sig);
            from_ptr(jit_insn_call(
                self.into(),
                c_name.map(|name| name.as_bytes().as_ptr() as *mut c_char).unwrap_or(ptr::null_mut()),
                func.into(), sig, native_args.as_mut_ptr(),
                native_args.len() as c_uint,
                flags.bits()
            ))
        }
    }
    #[inline(always)]
    /// Make an instruction that calls a function that has the signature given
    /// with some arguments through a pointer to the fucntion
    pub fn insn_call_indirect(&self, func:&'a Val, signature: &Ty,
                               args: &mut [&'a Val], flags: flags::CallFlags) -> &'a Val {
        unsafe {
            let mut native_args: &mut [jit_value_t] = mem::transmute(args);
            from_ptr(jit_insn_call_indirect(
                self.into(),
                func.into(),
                signature.into(),
                native_args.as_mut_ptr(),
                native_args.len() as c_uint,
                flags.bits()
            ))
        }
    }
    /// Make an instruction that calls a native function that has the signature
    /// given with some arguments
    fn insn_call_native(&self, name: Option<&str>,
                        native_func: *mut c_void, signature: &Ty,
                        args: &mut [&'a Val], flags: flags::CallFlags) -> &'a Val {
        if cfg!(not(ndebug)) {
            let name = name.unwrap_or("unnamed function");
            if !signature.is_signature() {
                panic!("Bad signature for {} - expected signature, got {:?}", name, signature)
            }
            let num_sig_args = signature.params().count();
            if args.len() != num_sig_args {
                panic!("Bad arguments to {} - expected {}, got {}", name, num_sig_args, args.len());
            }
            for (index, (arg, param)) in args.iter().zip(signature.params()).enumerate() {
                let ty = arg.get_type();
                if ty != param {
                    panic!("Bad argument #{} to {} - expected {:?}, got {:?}", index, name, param, ty);
                }
            }
        }
        unsafe {
            let mut native_args:&mut [jit_value_t] = mem::transmute(args);
            let c_name = name.map(|name| CString::new(name.as_bytes()).unwrap());
            from_ptr(jit_insn_call_native(
                self.into(),
                c_name.map(|name| name.as_bytes().as_ptr() as *mut c_char).unwrap_or(ptr::null_mut()),
                native_func,
                signature.into(),
                native_args.as_mut_ptr(),
                native_args.len() as c_uint,
                flags.bits()
            ))
        }
    }
    #[inline(always)]
    /// Make an instruction that calls a Rust function that has the signature
    /// given with no arguments and expects a return value
    pub fn insn_call_native0<R>(&self, name: Option<&str>,
                            native_func: extern fn() -> R,
                            signature: &Ty,
                            flags: flags::CallFlags) -> &'a Val {
        let func_ptr = unsafe { mem::transmute(native_func) };
        self.insn_call_native(name, func_ptr, signature, &mut [], flags)
    }
    #[inline(always)]
    /// Make an instruction that calls a Rust function that has the signature
    /// given with a single argument and expects a return value
    pub fn insn_call_native1<A,R>(&self, name: Option<&str>,
                                native_func: extern fn(A) -> R,
                                signature: &Ty,
                                mut args: [&'a Val; 1],
                                flags: flags::CallFlags) -> &'a Val {
        let func_ptr = unsafe { mem::transmute(native_func) };
        self.insn_call_native(name, func_ptr, signature, &mut args, flags)
    }
    #[inline(always)]
    /// Make an instruction that calls a Rust function that has the signature
    /// given with two arguments and expects a return value
    pub fn insn_call_native2<A,B,R>(&self, name: Option<&str>,
                                native_func: extern fn(A, B) -> R,
                                signature: &Ty,
                                mut args: [&'a Val; 2],
                                flags: flags::CallFlags) -> &'a Val {
        let func_ptr = unsafe { mem::transmute(native_func) };
        self.insn_call_native(name, func_ptr, signature, &mut args, flags)
    }
    #[inline(always)]
    /// Make an instruction that calls a Rust function that has the signature
    /// given with three arguments and expects a return value
    pub fn insn_call_native3<A,B,C,R>(&self, name: Option<&str>,
                                native_func: extern fn(A, B, C) -> R,
                                signature: &Ty,
                                mut args: [&'a Val; 3],
                                flags: flags::CallFlags) -> &'a Val {
        let func_ptr = unsafe { mem::transmute(native_func) };
        self.insn_call_native(name, func_ptr, signature, &mut args, flags)
    }
    #[inline(always)]
    /// Make an instruction that calls a Rust function that has the signature
    /// given with four arguments and expects a return value
    pub fn insn_call_native4<A,B,C,D,R>(&self, name: Option<&str>,
                                native_func: extern fn(A, B, C, D) -> R,
                                signature: &Ty,
                                mut args: [&'a Val; 4],
                                flags: flags::CallFlags) -> &'a Val {
        let func_ptr = unsafe { mem::transmute(native_func) };
        self.insn_call_native(name, func_ptr, signature, &mut args
            , flags)
    }
    #[inline(always)]
    /// Make an instruction that copies `size` bytes from the `source` address to the `dest` address
    pub fn insn_memcpy(&self, dest: &'a Val, source: &'a Val, size: &'a Val) -> bool {
        expect!(insn_memcpy, dest, source, size);
        unsafe {
            jit_insn_memcpy(self.into(), dest.into(), source.into(), size.into()) != 0
        }
    }
    #[inline(always)]
    /// Make an instruction that moves memory from a source address to a destination address
    pub fn insn_memmove(&self, dest: &'a Val, source: &'a Val, size: &'a Val) -> bool {
        expect!(insn_memmove, dest, source, size);
        unsafe {
            jit_insn_memmove(self.into(), dest.into(), source.into(), size.into()) != 0
        }
    }
    #[inline(always)]
    /// Make an instruction that sets memory at the destination address
    pub fn insn_memset(&self, dest: &'a Val, source: &'a Val, size: &'a Val) -> bool {
        expect!(insn_memset, dest, source, size);
        unsafe {
            jit_insn_memset(self.into(), dest.into(), source.into(), size.into()) != 0
        }
    }
    #[inline(always)]
    /// Make an instruction that allocates `size` bytes of memory from the stack
    pub fn insn_alloca(&self, size: &'a Val) -> &'a Val {
        expect!(insn_alloca, size, int);
        unsafe {
            from_ptr(jit_insn_alloca(self.into(), size.into()))
        }
    }
    #[inline(always)]
    /// Make an instruction that gets the address of a value
    pub fn insn_address_of(&self, value: &'a Val) -> &'a Val {
        unsafe {
            from_ptr(jit_insn_address_of(self.into(), value.into()))
        }
    }
    #[inline(always)]
    fn insn_binop(&self,
                    v1: &'a Val, v2: &'a Val,
                    f: unsafe extern "C" fn(
                        jit_function_t,
                        jit_value_t,
                        jit_value_t) -> jit_value_t)
                    -> &'a Val {
        unsafe {
            from_ptr(f(self.into(), v1.into(), v2.into()))
        }
    }
    #[inline(always)]
    fn insn_unop(&self,
                    value: &'a Val,
                    f: unsafe extern "C" fn(
                        jit_function_t,
                        jit_value_t) -> jit_value_t)
                    -> &'a Val {
        unsafe {
            from_ptr(f(self.into(), value.into()))
        }
    }
    #[inline(always)]
    /// Make instructions to run the block if the condition is met
    pub fn insn_if<B>(&self, cond: &'a Val, block: B) where B:FnOnce() {
        let mut after = Label::new(self);
        self.insn_branch_if_not(cond, &mut after);
        block();
        self.insn_label(&mut after);
    }
    #[inline(always)]
    /// Make instructions to run the block if the condition is not met
    pub fn insn_if_not<B>(&self, cond: &'a Val, block: B) where B:FnOnce() {
        let mut after = Label::new(self);
        self.insn_branch_if(cond, &mut after);
        block();
        self.insn_label(&mut after);
    }
    #[inline(always)]
    /// Make instructions to run the block if the condition is met
    pub fn insn_if_else<A, B>(&self, cond: &'a Val, if_block: A, else_block: B) where A:FnOnce(), B:FnOnce() {
        let mut after = Label::new(self);
        let mut end = Label::new(self);
        self.insn_branch_if_not(cond, &mut after);
        if_block();
        self.insn_branch(&mut end);
        self.insn_label(&mut after);
        else_block();
        self.insn_label(&mut end)
    }
    /// Make instructions to run the block forever
    pub fn insn_loop<B>(&self, block: B) where B:FnOnce() {
        let mut start = Label::new(self);
        self.insn_label(&mut start);
        block();
        self.insn_branch(&mut start);
    }
    /// Make instructions to run the block and continue running it so long
    /// as the condition is met
    pub fn insn_while<C, B>(&self, cond: C, block: B)
        where C:FnOnce() -> &'a Val, B:FnOnce() {
        let mut start = Label::new(self);
        self.insn_label(&mut start);
        let mut after = Label::new(self);
        let cond_v = cond();
        self.insn_branch_if_not(cond_v, &mut after);
        block();
        self.insn_branch(&mut start);
        self.insn_label(&mut after);
    }
    #[inline(always)]
    /// Set the optimization level of the function, where the bigger the level,
    /// the more effort should be spent optimising
    pub fn set_optimization_level(&self, level: c_uint) {
        unsafe {
            jit_function_set_optimization_level(self.into(), level);
        }
    }
    #[inline(always)]
    /// Get the max optimization level
    pub fn get_max_optimization_level() -> c_uint {
        unsafe {
            jit_function_get_max_optimization_level()
        }
    }
    #[inline(always)]
    /// Make this function a candidate for recompilation
    pub fn set_recompilable(&self) {
        unsafe {
            jit_function_set_recompilable(self.into());
        }
    }
    /// Get the entry block of this function
    pub fn get_entry(&self) -> Option<Block<'a>> {
        unsafe {
            from_ptr_opt(jit_function_get_entry(self.into()))
        }
    }
    /// Get the current block of this function
    pub fn get_current(&self) -> Option<Block<'a>> {
        unsafe {
            from_ptr_opt(jit_function_get_current(self.into()))
        }
    }
    #[inline(always)]
    /// Compile the function
    pub fn compile(self) -> CompiledFunction<'a> {
        if !self.owned {
            panic!("The function must be owned")
        }
        unsafe {
            let ptr = (&self).into();
            mem::forget(self);
            jit_function_compile(ptr);
            from_ptr(ptr)
        }
    }
    #[inline(always)]
    /// Compile the function and call a closure with it directly
    pub fn compile_with<A, R, F>(self, cb: F) -> CompiledFunction<'a>
        where F:FnOnce(extern fn(A) -> R) {
        let compiled = self.compile();
        compiled.with(cb);
        compiled
    }
}