1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
use libc::{c_int, c_uint, c_ulonglong};
use ffi::{core, target};
use ffi::execution_engine as engine;
use ffi::execution_engine::*;
use ffi::target_machine::LLVMCodeModel;
use cbox::{CBox, CSemiBox, DisposeRef};
use std::marker::PhantomData;
use std::{mem, ptr};
use compile::Compile;
use context::{Context, GetContext};
use module::Module;
use ty::{StructType, Type};
use util::{self, Sub};
use value::{Function, Value};

/// An abstract interface for implementation execution of LLVM modules.
///
/// This is designed to support both interpreter and just-in-time (JIT) compiler implementations.
pub trait ExecutionEngine<'a>:'a + Sized + DisposeRef where LLVMExecutionEngineRef: From<&'a Self> {
    /// The options given to the engine upon creation.
    type Options : Copy;
    /// Create a new execution engine with the given `Module` and optiions, or return a
    /// description of the error.
    fn new(module: &'a Module, options: Self::Options) -> Result<CSemiBox<'a, Self>, CBox<str>>;

    /// Add a module to the list of modules to interpret or compile.
    fn add_module(&'a self, module: &'a Module) {
        unsafe { engine::LLVMAddModule(self.into(), (&*module).into()) }
    }
    /// Remove a module from the list of modules to interpret or compile.
    fn remove_module(&'a self, module: &'a Module) -> &'a Module {
        unsafe {
            let mut out = mem::uninitialized();
            engine::LLVMRemoveModule(self.into(), module.into(), &mut out, ptr::null_mut());
            out.into()
        }
    }
    /// Execute all of the static constructors for this program.
    fn run_static_constructors(&'a self) {
        unsafe { engine::LLVMRunStaticConstructors(self.into()) }
    }
    /// Execute all of the static destructors for this program.
    fn run_static_destructors(&'a self) {
        unsafe { engine::LLVMRunStaticDestructors(self.into()) }
    }
    /// Attempt to find a function with the name given, or `None` if there wasn't
    /// a function with that name.
    fn find_function(&'a self, name: &str) -> Option<&'a Function> {
        util::with_cstr(name, |c_name| unsafe {
            let mut out = mem::zeroed();
            engine::LLVMFindFunction(self.into(), c_name, &mut out);
            mem::transmute(out)
        })
    }
    /// Run `function` with the arguments given as ``GenericValue`s, then return the result as one.
    ///
    /// Note that if this engine is a `JitEngine`, it only supports a small fraction of combinations
    /// for the arguments and return value, so be warned.
    ///
    /// To convert the arguments to `GenericValue`s, you should use the `GenericValueCast::to_generic` method.
    /// To convert the return value from a `GenericValue`, you should use the `GenericValueCast::from_generic` method.
    fn run_function(&'a self, function: &'a Function, args: &[GenericValue<'a>]) -> GenericValue<'a> {
        let ptr = args.as_ptr() as *mut LLVMGenericValueRef;
        unsafe { engine::LLVMRunFunction(self.into(), function.into(), args.len() as c_uint, ptr).into() }
    }
    /// Returns a pointer to the global value given.
    ///
    /// This is marked as unsafe because the type cannot be guranteed to be the same as the
    /// type of the global value at this point.
    unsafe fn get_global<T>(&'a self, global: &'a Value) -> &'a T {
        mem::transmute(engine::LLVMGetPointerToGlobal(self.into(), global.into()))
    }
    /// Returns a pointer to the global value with the name given.
    ///
    /// This is marked as unsafe because the type cannot be guranteed to be the same as the
    /// type of the global value at this point.
    unsafe fn find_global<T>(&'a self, name: &str) -> Option<&'a T> {
        util::with_cstr(name, |ptr|
            mem::transmute(engine::LLVMGetGlobalValueAddress(self.into(), ptr))
        )
    }
}

/// The options to pass to the MCJIT backend.
#[derive(Copy, Clone)]
pub struct JitOptions {
    /// The degree to which optimizations should be done, between 0 and 3.
    ///
    /// 0 represents no optimizations, 3 represents maximum optimization
    pub opt_level: usize
}
/// The MCJIT backend, which compiles functions and values into machine code.
pub struct JitEngine(PhantomData<[u8]>);
native_ref!{&JitEngine = LLVMExecutionEngineRef}
dispose!{JitEngine, LLVMOpaqueExecutionEngine, LLVMDisposeExecutionEngine}
impl<'a> JitEngine {
    /// Run the closure `cb` with the machine code for the function `function`.
    ///
    /// If the function takes multiple arguments, these should be wrapped in a tuple due to 
    /// the limitations of Rust's type system.
    ///
    /// This will check that the types match at runtime when in debug mode, but not release mode.
    /// You should make sure to use debug mode if you want it to error when the types don't match.
    pub fn with_function<C, A, R>(&self, function: &'a Function, cb: C) where A:Compile<'a>, R:Compile<'a>, C:FnOnce(extern "C" fn (A) -> R) {
        if cfg!(not(ndebug)) {
            let ctx = function.get_context();
            let sig = function.get_signature();
            assert_eq!(Type::get::<R>(ctx), sig.get_return());
            let arg = Type::get::<A>(ctx);
            assert_eq!(sig.get_params(), if let Some(args) = StructType::from_super(arg) {
                args.get_elements()
            } else {
                vec![arg]
            });
        }
        unsafe {
            cb(self.get_function::<A, R>(function));
        }
    }
    /// Run the closure `cb` with the machine code for the function `function`.
    pub unsafe fn with_function_unchecked<C, A, R>(&self, function: &'a Function, cb: C) where A:Compile<'a>, R:Compile<'a>, C:FnOnce(extern fn(A) -> R) {
        cb(self.get_function::<A, R>(function));
    }
    /// Returns a pointer to the machine code for the function `function`.
    ///
    /// This is marked as unsafe because the types given as arguments and return could be different
    /// from their internal representation.
    pub unsafe fn get_function<A, R>(&self, function: &'a Function) -> extern fn(A) -> R {
        let ptr:&u8 = self.get_global(function);
        mem::transmute(ptr)
    }
}
impl<'a> ExecutionEngine<'a> for JitEngine {
    type Options = JitOptions;
    fn new(module: &'a Module, options: JitOptions) -> Result<CSemiBox<'a, JitEngine>, CBox<str>> {
        unsafe {
            let mut ee = mem::uninitialized();
            let mut out = mem::zeroed();
            engine::LLVMLinkInMCJIT();
            if target::LLVM_InitializeNativeTarget() == 1 {
                return Err("failed to initialize native target".into())
            }
            if target::LLVM_InitializeNativeAsmPrinter() == 1 {
                return Err("failed to initialize native asm printer".into())
            }
            let mut options = LLVMMCJITCompilerOptions {
                OptLevel: options.opt_level as c_uint,
                CodeModel: LLVMCodeModel::LLVMCodeModelDefault,
                NoFramePointerElim: 0,
                EnableFastISel: 1,
                MCJMM: ptr::null_mut()
            };
            let size = mem::size_of::<LLVMMCJITCompilerOptions>();
            let result = engine::LLVMCreateMCJITCompilerForModule(&mut ee, (&*module).into(), &mut options, size, &mut out);
            if result == 0 {
                Ok(ee.into())
            } else {
                Err(CBox::new(out))
            }
        }
    }
}
/// The interpreter backend
pub struct Interpreter(PhantomData<[u8]>);
native_ref!{&Interpreter = LLVMExecutionEngineRef}
dispose!{Interpreter, LLVMOpaqueExecutionEngine, LLVMDisposeExecutionEngine}
impl<'a> Interpreter {
    /// Run `function` with the arguments given as ``GenericValue`s, then return the result as one.
    ///
    /// To convert the arguments to `GenericValue`s, you should use the `GenericValueCast::to_generic` method.
    /// To convert the return value from a `GenericValue`, you should use the `GenericValueCast::from_generic` method.
    pub fn run_function(&self, function: &'a Function, args: &[GenericValue<'a>]) -> GenericValue<'a> {
        let ptr = args.as_ptr() as *mut LLVMGenericValueRef;
        unsafe { engine::LLVMRunFunction(self.into(), function.into(), args.len() as c_uint, ptr).into() }
    }
}
impl<'a> ExecutionEngine<'a> for Interpreter {
    type Options = ();
    fn new(module: &'a Module, _: ()) -> Result<CSemiBox<'a, Interpreter>, CBox<str>> {
        unsafe {
            let mut ee = mem::uninitialized();
            let mut out = mem::zeroed();
            engine::LLVMLinkInInterpreter();
            let result = engine::LLVMCreateInterpreterForModule(&mut ee, (&*module).into(), &mut out);
            if result == 0 {
                Ok(ee.into())
            } else {
                Err(CBox::new(out))
            }
        }
    }
}
/// A wrapped value that can be passed to an interpreted function or returned from one
pub struct GenericValue<'a> {
    value: LLVMGenericValueRef,
    marker: PhantomData<&'a ()>
}
native_ref!(contra GenericValue, value: LLVMGenericValueRef);
impl<'a> Drop for GenericValue<'a> {
    fn drop(&mut self) {
        unsafe {
            engine::LLVMDisposeGenericValue(self.value)
        }
    }
}

/// A value that can be cast into a `GenericValue` and that a `GenericValue` can be cast into.
///
/// Both these methods require contexts because some `Type` constructors are needed for the
/// conversion and these constructors need a context.
pub trait GenericValueCast<'a> {
    /// Create a `GenericValue` from this value.
    fn to_generic(self, context: &'a Context) -> GenericValue<'a>;
    /// Convert the `GenericValue` into a value of this type again.
    fn from_generic(value: GenericValue<'a>, context: &'a Context) -> Self;
}

impl<'a> GenericValueCast<'a> for f64 {
    fn to_generic(self, ctx: &'a Context) -> GenericValue<'a> {
        unsafe {
            let ty = core::LLVMDoubleTypeInContext(ctx.into());
            engine::LLVMCreateGenericValueOfFloat(ty, self).into()
        }
    }
    fn from_generic(value: GenericValue<'a>, ctx: &'a Context) -> f64 {
        unsafe {
            let ty = core::LLVMDoubleTypeInContext(ctx.into());
            engine::LLVMGenericValueToFloat(ty, value.into())
        }
    }
}
impl<'a> GenericValueCast<'a> for f32 {
    fn to_generic(self, ctx: &'a Context) -> GenericValue<'a> {
        unsafe {
            let ty = core::LLVMFloatTypeInContext(ctx.into());
            engine::LLVMCreateGenericValueOfFloat(ty, self as f64).into()
        }
    }
    fn from_generic(value: GenericValue<'a>, ctx: &'a Context) -> f32 {
        unsafe {
            let ty = core::LLVMFloatTypeInContext(ctx.into());
            engine::LLVMGenericValueToFloat(ty, value.into()) as f32
        }
    }
}
macro_rules! generic_int(
    ($ty:ty, $signed:expr) => (
        impl<'a> GenericValueCast<'a> for $ty {
            fn to_generic(self, ctx: &'a Context) -> GenericValue<'a> {
                unsafe {
                    let ty = <Self as Compile<'a>>::get_type(ctx);
                    engine::LLVMCreateGenericValueOfInt(ty.into(), self as c_ulonglong, $signed as c_int).into()
                }
            }
            fn from_generic(value: GenericValue<'a>, _: &'a Context) -> $ty {
                unsafe {
                    engine::LLVMGenericValueToInt(value.into(), $signed as c_int) as $ty
                }
            }
        }
    );
    (some $signed:ty, $unsigned:ty) => (
        generic_int!{$signed, true}
        generic_int!{$unsigned, false}
    );
);

impl<'a> GenericValueCast<'a> for bool {
    fn to_generic(self, ctx: &'a Context) -> GenericValue<'a> {
        unsafe {
            let ty = <Self as Compile<'a>>::get_type(ctx);
            engine::LLVMCreateGenericValueOfInt(ty.into(), self as c_ulonglong, 0).into()
        }
    }
    fn from_generic(value: GenericValue<'a>, _: &'a Context) -> bool {
        unsafe {
            engine::LLVMGenericValueToInt(value.into(), 0) != 0
        }
    }
}
generic_int!{some i8, u8}
generic_int!{some i16, u16}
generic_int!{some i32, u32}
generic_int!{some i64, u64}